polar coordinates

x=rcostheta, " " y=rsintheta

then x^2+y^2=r^2 and jacobian (J) = r

polar coordinates

x=rcostheta, " " y=rsintheta

then x^2+y^2=r^2 and jacobian (J) = r

Hi @Salman_Sheikh Welcome to the forum!

I believe you're trying to convert polar coordinates to Cartersian coordinates, or vice-versa. Either way, I asked our new AI Writer to write the snippet for me, and got the following snippets.

I checked them and it looks to be correct. Please let me know if it works for you.

To convert Cartesian coordinates to polar coordinates, please enter the values below:

Enter x-coordinate: {formtext: name=x}{r=sqrt(x^2+y^2)}

Enter y-coordinate: {formtext: name=y}{theta=atan(y/x)}

The polar coordinates (r, theta) are: ({=r}, {=theta})

The Jacobian (J) is: {=r}

Polar Coordinate Input:

Radius (r): {formtext: name=radius}{r=radius}

Angle in degrees (θ): {formtext: name=angle}{theta=angle}

{theta_rad=theta*acos(-1)/180} {# Convert angle to radians #}

Cartesian Coordinates:

X = r*cos(θ) = {x=round(r*cos(theta_rad))}{=x}

Y = r*sin(θ) = {y=round(r*sin(theta_rad))}{=y}